Chapter 5: The Gaseous State

These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests!

To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

Gas Pressure and Measurement

The Difference between Solids and Liquids and Gasses - U can compress a gas
U can relate Pressure - Volume - Temperature and Molar Voume in 1 Equation!!
PRESSURE - the force exerted per unit area of surface
ACCELERATION - The change of speed per unit of time

$$
\text { Acceleration of Gravitiy }(\mathbf{A O G})=9.81 \mathrm{~m} / \mathrm{sec}^{2}
$$

FORCE = Mass * AOG
PRESSURE $=$ Force $/$ Area $=$ Force $/\left[\mathrm{Pi} \mathrm{r}^{2}\right]$
A coin 9.3 mm in radius weighs 2.5 g is on a table.

$$
\begin{array}{lll}
\text { Force }=\text { Mass } * \text { AOG } & =2.5 \times 10^{-2} \mathrm{~kg} * 9.81 \mathrm{~m} / \mathrm{s}^{2}=2.45 \times 10^{-1} & =\mathbf{2 . 5} * \mathbf{1 0}^{\mathbf{- 2}} \mathbf{~ k g ~ m} / \mathbf{s}^{\mathbf{2}} \\
\text { Pressure }=\text { Force } /\left[\mathrm{Pi} \mathrm{r}^{2}\right] & =2.5 \times 10^{-3} \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2} / 3.14 *\left(9.2 \times 10^{-3} \mathrm{~m}\right)^{2} & =\mathbf{9 3} \mathbf{~ k g} / \mathbf{m s}^{2}
\end{array}
$$

Units of Pressure: Pascal ($\mathbf{P a}$) $\mathrm{kg} / \mathrm{ms}^{2}$

$$
\begin{array}{ll}
\text { Atm } & 1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}=\text { approx } 100 \mathrm{k} \mathrm{~Pa} \\
\mathbf{M m ~ H g} & =\mathrm{TORR}=760 \mathrm{~mm} \mathrm{Hg}=1 \mathrm{Atm}
\end{array}
$$

$\underline{\text { Barameter }}$ is a device for measuring atmospheric pressure. At sea level it's 760 mm Hg

Manometer is a device to measure the pressure of a gas.

Example 5.1 The pressure in a flask is 797.7 mm Hg . Find the pressure in Pa and Atm.

1. $797.7 \mathrm{~mm} \mathrm{Hg} * 1.01325 \times 105 \mathrm{~Pa} / 760 \mathrm{~mm} \mathrm{Hg}=1.064 \times 10^{\mathbf{5}} \mathbf{~ P a}$
2. $797.7 \mathrm{~mm} \mathrm{Hg} * 1 \mathrm{~atm} / 760 \mathrm{~mm} \mathrm{Hg}=\mathbf{1 . 0 5 0} \mathbf{~ a t m}$

CONCEPT CHECK: 5.1 Two Barameters, one with Hg, one with water. Which has the higher column of water?

$$
\begin{array}{lr}
\mathbf{H}=\mathbf{P} /(\mathbf{g} * \mathbf{d}) \quad \mathrm{H}=\text { height } & \mathrm{P}=\text { Pressure } \quad \mathrm{g}=\mathrm{AOG} \quad \mathrm{~d}=\text { density of liquid } \\
\mathbf{H}_{\text {water }}=\mathrm{P} / \mathrm{g} * \mathrm{D}_{\mathrm{w}}=\mathrm{P} / \mathrm{g} * 1 \mathrm{~g} / \mathrm{cc} & \mathbf{H}_{\mathbf{H g}}=\mathrm{P} / \mathrm{g} \mathrm{D}_{\mathrm{Hg}}=\mathrm{P} / \mathrm{g} * 13 \mathrm{~g} / \mathrm{cc} \\
\mathbf{H}_{\text {water }}>\mathbf{H}_{\mathbf{H g}} &
\end{array}
$$

BOYLES LAW Gas is compressible. The volume of a gas at a given temperature varies inversely with the applied pressure.

$$
\mathrm{V}=1 / \mathrm{P} \quad \mathrm{P} V=\mathrm{constant} \quad \mathrm{~V}=\text { Volume } \quad \mathrm{P}=\text { Pressure }
$$

For O_{2} at $0^{\circ} \mathrm{C}$ the constant is approximately 0.7

A more useful Boyles Law Equation:

$\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} \quad$ Calculate volume when the pressure changes $\rightarrow \quad \mathbf{V}_{\mathbf{2}}=\mathbf{V}_{\mathbf{1}} \mathbf{P}_{\mathbf{1}} / \mathbf{P}_{\mathbf{2}}$

PROBLEM 50.0 L of O_{2} at 15.7 atm at $21^{\circ} \mathrm{C}$. What is the volume at 1.00 atm and $21^{\circ} \mathrm{C}$?
$\mathbf{V}_{\mathbf{2}}=\mathbf{V}_{\mathbf{1}} \mathbf{P}_{\mathbf{1}} / \mathbf{P}_{\mathbf{2}}=50.0 \mathrm{~L} *[15.7 \mathrm{~atm} / 1.00 \mathrm{~atm}]=\mathbf{7 8 5} . \mathbf{L}$
Note: The Volume vs Pressure rations [numbers in brackets]
Example $5.212 .0 \mathrm{dm}^{3}$ at $98.9 \mathrm{kPa} \rightarrow 119.0 \mathrm{kpa}$. What is the new volume?
$\mathbf{V}_{\mathbf{2}}=\mathbf{V}_{\mathbf{1}} \mathbf{P}_{\mathbf{1}} / \mathbf{P}_{\mathbf{2}}=12.0 \mathrm{dm}^{3} *[98.9 \mathrm{kPa} / 119.0 \mathrm{kPa}]=\mathbf{9 . 9 7} \mathbf{~ d m}^{\mathbf{3}}$
Note: The constant and these equations are approximately true at low to moderate pressure

CHARLES LAW A gas contracts when cooled and expands when heated.

Plot the volume of a gas at various temperatures. At low temp, the gas liquifies.
Extrapolate the values to zero volume and the temp is $\mathbf{- 2 7 3 . 1 5}$ degrees \mathbf{C} [or $0 \operatorname{deg} \mathrm{~K}$] !
Plot shows the volume of a gas at constant pressure is directly proportional to the ABSOLUTE temp [${ }^{\circ} \mathrm{K}$].

$$
\mathrm{V} / \mathrm{T}=\mathrm{CONST} \quad \text {-or- } \quad \mathbf{V}_{1} / \mathbf{T}_{1}=\mathbf{V}_{2} / \mathbf{T}_{2}
$$

Example 5.3 A 785 L tank of Oxygen is at 1 atm and $21^{\circ} \mathrm{C}$. What is the volume at $28^{\circ} \mathrm{C}$?
$\mathrm{T}_{1}=21^{\circ} \mathrm{C}=294^{\circ} \mathrm{K} \quad \mathrm{T}_{2}=28^{\circ} \mathrm{C}=301^{\circ} \mathrm{K}$
$\mathbf{V}_{\mathbf{2}}=\mathbf{V}_{\mathbf{1}} * \mathbf{T}_{\mathbf{2}} / \mathrm{T}_{1}=785 \mathrm{~L} *\left[301^{\circ} \mathrm{K} / 294^{\circ} \mathrm{K}\right]=803.68 \mathrm{~L}=\mathbf{8 0 4} \mathbf{L}$
Note: Watch the ratio of TEMPS. Temp goes up, Vol goes up. Temp goes down, Vol goes down
COMBINED GAS LAW

$$
\begin{aligned}
& {\left[\mathrm{P}_{1} \frac{\left.* \mathrm{~V}_{1}\right]=\left[\mathrm{P}_{2}-\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}\right]}{}\right.} \\
& \mathbf{V}_{2}=\underline{\mathrm{P}}_{1} \frac{* \mathrm{~V}_{1}}{\mathrm{~T}_{1}} \frac{* \mathrm{~T}_{2}}{* \mathrm{P}_{2}}
\end{aligned}
$$

Example 5.4 C, H, N analysis uses hot CuO to oxidize organic compounds to $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and convert Nitrogen in nitrogen containing compounds to N_{2}. A 39.8 mg sample of caffeine gave $10.1 \mathrm{~cm}^{3}$ of Nitrogen [N_{2}] at 23° C and 746 mm Hg . What is the volume at $\mathbf{S T P} \rightarrow \mathbf{0}^{\circ} \mathbf{C}$ and 760 mm Hg ?

$$
\mathrm{T}_{1}=23^{\circ} \mathrm{C}+273=296^{\circ} \mathrm{K} \quad \mathrm{~T}_{2}=0^{\circ} \mathrm{C}+273=273^{\circ} \mathrm{K}
$$

The book sets up the data as below. I'd recommend that you also do it this way:

$$
\begin{array}{lll}
\mathrm{V}_{1}=10.1 \mathrm{~cm}^{3} & \mathrm{P}_{1}=746 \mathrm{~mm} \mathrm{Hg} & \mathrm{~T}_{1}=296^{\circ} \mathrm{K} \\
\mathrm{~V}_{2}=? & \mathrm{P}_{2}=760 \mathrm{~mm} \mathrm{Hg} & \mathrm{~T}_{2}=273^{\circ} \mathrm{K}
\end{array}
$$

Then plug the data into the equation:

$$
\begin{aligned}
\mathbf{V}_{\mathbf{2}}= & \mathbf{V}_{\mathbf{1}} *\left[\mathbf{P}_{\mathbf{1}} / \mathbf{P}_{\mathbf{2}}\right] *\left[\mathbf{T}_{\mathbf{2}} / \mathbf{T}_{\mathbf{1}}\right]=10.1 \mathrm{~cm}^{3} *[746 \mathrm{~mm} \mathrm{Hg} / 760 \mathrm{~mm} \mathrm{Hg}] *\left[273^{\circ} \mathrm{K} / 296^{\circ} \mathrm{K}\right]= \\
& 9.1436 \mathrm{~cm}^{3}=\mathbf{9 . 1 4 \mathbf { c m } ^ { 3 }}
\end{aligned}
$$

CONCEPT CHECK: 5.2 We have a 10.0 L flask at 20 atm .
A. Decrease the temp by $10^{\circ} \mathrm{C} \quad$ What happens?
B. Increase the volume What happens?
C. Heat it by $10^{\circ} \mathrm{C} \quad$ What happens?
D. Decreast the volume What happens?

AVOGADRO's LAW: Equal volume of any 2 gases at the same temp and pressure contains the same number of molecules!

Molar Gas Volume: The volume of 1 mole of a gas at STP [$0^{\circ} \mathrm{C} \& 1 \mathrm{~atm}$] = 22.4 L / Mole and contains 6.02×10^{23} molecules of the gas.

***** IDE	L GAS LA	W*****	$\underline{\mathbf{P V}}=\mathbf{n} \mathbf{R} \mathbf{T}$	
$\mathrm{P}=$ Pressure	$\mathrm{V}=$ Volume	$\mathrm{n}=$ moles $=\mathrm{g} / \mathrm{Mw}$	$\mathrm{R}=$ constant	$\mathrm{T}=$ Temp ${ }^{\circ} \mathrm{K}$
$\mathbf{R}=$	0.082058	L atm / K Mole	*****	
		$\mathrm{kg} \mathrm{m}{ }^{2} / \mathrm{s}^{2} \mathrm{~K}$ Mole		
		$\mathrm{kPa} \mathrm{dm}{ }^{3}$ / K Mole		
	1.9872	cal / K Mole	*****	

Example 5.6 50.0 L of Oxygen at $21^{\circ} \mathrm{C}$ and 15.7 atm . Find the number of grams of Oxygen?
$\mathrm{PV}=\mathrm{nRT} \quad \rightarrow \quad \mathrm{n}=\mathrm{g} / \mathrm{Mw} \quad \rightarrow \quad \mathrm{PV}=\mathrm{gRT} / \mathrm{Mw}$
$\mathbf{g}=\mathbf{P}$ V Mw $/ \mathbf{R} \mathbf{T}=15.7 \mathrm{~atm} * 50.0 \mathrm{~L} * 32.00 \mathrm{~g} /$ Mole $/ 0.082058 \mathrm{~L} \mathrm{~atm} / \mathrm{K}$ Mole $* 294^{\circ} \mathrm{K}=$
$\mathrm{g}=1.04 \times 10^{3} \mathrm{~g}$ Oxygen
GAS DENSITY \quad Density $=$ Mass $/$ Volume $=$ grams $/$ Liter
BUT Volume changes with temperature, so the gas density changes with temperature!
Example 5.7 What is the density of O_{2} in g / L at $25^{\circ} \mathrm{C}$ and 0.850 atm ?
\# Note the density above is in grams per Liter, so the volume is One Liter
$\mathbf{P V}=\mathbf{g} \mathbf{R} \mathbf{T} / \mathbf{M w}$
$\mathbf{g}=\mathbf{P} \mathbf{V} \mathbf{M w} / \mathbf{R} \mathbf{T}=0.850 \mathrm{~atm} * 1 \mathrm{~L}^{\#} * 32.00 \mathrm{~g} /$ Mole $/ 0.082058 \mathrm{~L} \mathrm{~atm} / \mathrm{K}$ Mole $* 298^{\circ} \mathrm{K}=$
$\mathrm{g}=1.11 \mathrm{~g}$
Density $=$ mass $/ \mathrm{vol}=\mathrm{g} / \mathrm{L}=1.11 \mathrm{~g} / 1 \mathrm{~L}=\mathbf{1 . 1 1} \mathrm{g} / \mathbf{L}$
Example 5.7 Use Chlorine instead of Oxygen?
Example 5.7 Calculate the density of Helium in g / L at $21^{\circ} \mathrm{C}$ and 752 mm Hg ?
Example 5.7 Air is $1.188 \mathrm{~g} / \mathrm{L}$. What is the difference between air and Helium?

DENSITY AND MW The density of a gas is proportional to the Mw [see equations above].
Bromine vs Air \rightarrow Bromine is much denser.
Helium vs Air \rightarrow Helium balloons float.
This is how the Mw of gases was determined in the olden days!
Pg 192 Halothane at $71^{\circ} \mathrm{C}$ and 768 mm Hg has a density of $7.05 \mathrm{~g} / \mathrm{L}$. What is the Mw ?

$$
\mathbf{P V}=\mathbf{n R T} \quad \rightarrow \quad \mathbf{P V}=\frac{\mathbf{g} \mathbf{R T}}{\mathbf{M w}}
$$

$\mathbf{M w}=\mathbf{g} \mathbf{R T} / \mathbf{P V}=\frac{7.05 \mathrm{~g} * 0.082058 \mathrm{~L} \mathrm{~atm} / \mathrm{K} \text { Mole } * 344^{\circ} \mathrm{K}}{[760 \mathrm{~mm} / \mathrm{Hg} / 733 \mathrm{~mm} \mathrm{gg}] / \mathrm{atm}^{*} 1^{\#} \mathrm{~L}}=191.937=\mathbf{1 9 2} \mathbf{g} /$ Mole [760 mm Hg / 733 mm Hg]/ atm * $1^{\#}$ L

Example 5.8200 ml flask contains a gas with a mass of 0.970 g , the temp $\mathrm{Is} 99^{\circ} \mathrm{C}$ and pressure 733 mm Hg .
What is the Mw?
$\mathbf{M w}=\mathbf{g} \mathbf{R} \mathbf{T} / \mathbf{P V}=\underline{0.970 \mathrm{~g} * 0.082058 \mathrm{~L} \mathrm{~atm} / \mathrm{K} \text { Mole } * 372^{\circ} \mathrm{K}}$
[$733 \mathrm{~mm} \mathrm{Hg} / 760 \mathrm{~mm} \mathrm{Hg} / \mathrm{Atm}$] $* 0.2 \mathrm{~L}=153.5=\mathbf{1 5 4} \mathbf{g} / \mathbf{M o l e}$
CONCEPT CHECK: 5.3: Three 1 Liter Flask contain Helium [Mw 4.00], Argon [Mw 39.95], and Xenon [Mw 131.20] at 878 mm Hg .
A. Which has the most atoms of gas?
B. Which flask has the greatest density?
C. The Helium flask is heated, the Argon cooled. Which of the three has the highest pressure?
D. The Helium flask is cooled, the Xenon heated. Which has the lowest pressure?
E. Which of the three flasks has the most moles of gas?

Pg $195 \quad 2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2} \quad$ With an MnO_{2} Cat and heated.
0.0100 moles of Potassium Chlorate is heated at $298^{\circ} \mathrm{K}$ and 1.02 atm .

What's the volume of Oxygen generated?
1st calculate the moles of oxygen $\frac{0.0100 \mathrm{Mole} \mathrm{KClO}_{3}}{2 \mathrm{Koles} \mathrm{KClO}_{3}}=\frac{\mathrm{x}}{3 \text { Moles } \mathrm{O}_{2}} \quad \mathrm{x}=0.0150$ Mole
Then: $\mathbf{P V}=\mathbf{n R T}$
$\mathbf{V}=\mathbf{n R T} / \mathbf{P}=0.0150$ Mole $* 0.082058 \mathrm{~L}$ atm $/ \mathrm{K}$ Mole $* 298^{\circ} \mathrm{K} / 1.02 \mathrm{~atm}=0.3595=\mathbf{0 . 3 6 0} \mathbf{L}$
Example 5.9 Auto air bags use Sodium Azide to fill the bag. How many grams of Sodium Azide are required to generate 75.0 L of Nitrogen at $25^{\circ} \mathrm{C}$ and 748 mm Hg ?
$6 \mathrm{NaN}_{3}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}+2 \mathrm{Fe}+9 \mathrm{~N}_{2}$ (gas)

?
 75.0 L

First - determine the number of moles of Nitrogen gas at STP. $\quad \mathbf{P V}=\mathbf{n R T}$
$\mathbf{n}=\mathbf{P V} / \mathbf{R T}=[748 \mathrm{~mm} \mathrm{Hg} / 760 \mathrm{~mm} \mathrm{Hg} / \mathrm{atm}] * 75.0 \mathrm{~L} / 0.082058 \mathrm{~L}$ atm $/ \mathrm{K}$ Mole $* 298^{\circ} \mathrm{K}=$

3.02 Moles

Based on the reaction where it takes 6 moles of NaN_{3} to 9 moles of N_{2}, calculate the moles of NaN_{3} :

$$
\begin{array}{ll}
\frac{3.02 \text { Moles } \mathrm{N}_{2}}{9 \text { Moles } \mathrm{N}_{2}}=\frac{\mathrm{x}}{6 \text { Moles } \mathrm{NaN}_{3}} & \mathrm{x}=2.01 \text { Moles } \mathrm{NaN}_{3} \\
2.01 \text { Moles } * 65.01 \mathrm{~g} / \text { Moles }=\mathbf{1 3 1} \mathbf{~ g ~ N a N} \\
3
\end{array} \quad . \quad .
$$

Example 5.9 How many Liters of chlorine gas are obtained from reacting 9.41 g HCl at $40^{\circ} \mathrm{C}$ and 787 mm Hg

$$
2 \mathrm{KMnO}_{4}+16 \mathrm{HCl} \rightarrow 8 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{KCl}+2 \mathrm{MnCl}_{2}+5 \mathrm{Cl}_{2}
$$

DALTONS LAW OF PARTIAL PRESSURE The sum of the partial pressure of all of the different gasses in a mixture equals the total pressure of he mix:

$$
P_{t}=P_{a}+P_{b}+P_{c}+\ldots
$$

The mole fraction of a component gas equals the fraction of moles of that component in the total moles of the gas mixture Mole Fract $_{\mathrm{a}}=\mathrm{n}_{\mathrm{a}} / \mathrm{n}_{\mathrm{t}}=\mathrm{P}_{\mathrm{a}} / \mathrm{P}_{\mathrm{t}}$

Ex 5.10 $\quad 1.00 \mathrm{~L}$ of dry air at 786 mm Hg contains 0.925 g of Nitrogen at $25^{\circ} \mathrm{C}$. What is the partial pressure of the Nitrogen? What is the mole fraction of the Nitrogen?
$\mathbf{P V}=\mathbf{n R T} \quad$ We need to calculate the pressure of the Nitrogen in the 1.00 L mixture.
$\mathbf{P}=\mathbf{n R T} / \mathbf{V}=\left[0.925 \mathrm{~g} / 28.0 \mathrm{~g} / \mathrm{Mole} \mathrm{N}_{2}\right] * 0.082058 \mathrm{~L} \mathrm{~atm} / \mathrm{K} \mathrm{Mole} * 298^{\circ} \mathrm{K} / 1.00 \mathrm{~L}=0.808 \mathrm{~atm}$
$0.808 \mathrm{~atm} * 760 \mathrm{~mm} \mathrm{Hg} / \mathrm{Atm}=\mathbf{6 1 4} \mathbf{~ m m ~ H g}$ pressure of the Nitrogen.
Mole Fraction of the Nitrogen $=614 \mathrm{~mm} \mathrm{Hg} / 786 \mathrm{~mm} \mathrm{Hg}=\mathbf{0 . 8 1}$

GASES OVER WATER

As a gas is bubbled through water, it picks up some water vapour per the chart.

Temp ${ }^{\mathbf{o}} \mathbf{C}$	$\underline{0}$	10	15	27	29	32	23	25	27	30	40
Pressure mm Hg	4.6	9.2	12.8	14.5	165	18.7	21.1	23.8	26.7	31.8	55.3

Ex 5.11 Hydrogen is collected over water from the following reaction:

$$
2 \mathrm{HCl}+\mathrm{Zn} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

How much gas is collected over water, if 156 ml of gas is collected at $19^{\circ} \mathrm{C}$ and 769 mm Hg . What is the mass of H_{2} collected?

1. Find the partial pressure of the Hydrogen. $\mathrm{P}_{\mathrm{t}}=\mathrm{P}_{\mathrm{h}}+\mathrm{P}_{\mathrm{w}}$.

$$
\mathbf{P}_{\mathrm{h}}=\mathbf{P}_{\mathrm{t}}-\mathbf{P}_{\mathbf{w}}=769 \mathrm{~mm} \mathrm{Hg}-16.5 \mathrm{~mm} \mathrm{Hg}=752 \mathbf{~ m m ~ H g} \text { for only the Hydrogen }
$$

2. Determine the number of Moles of Hydrogen: $\quad \mathbf{P V}=\mathbf{n R T}$

$$
\mathbf{n}=\mathbf{P V} / \mathbf{R T}=\frac{[752 \mathrm{~mm} \mathrm{Hg} / 760 \mathrm{~mm} \mathrm{Hg} / \mathrm{Atm}] * 0.156 \mathrm{~L}}{0.082058 \mathrm{~L} \mathrm{~atm} / \mathrm{K} \mathrm{Mole} / 293^{\circ} \mathrm{K}}=6.42 \times 10^{-3} \mathbf{M o l e}
$$

Mass of Hydrogen $=6.42 \times 10^{-3} \mathrm{Mol} * 2.02 \mathrm{~g} / \mathrm{Mole}=\mathbf{1 . 3 0} \times \mathbf{1 0}^{-\mathbf{2}} \mathbf{g ~ H}_{\mathbf{2}}$
Example 5.11 Oxygen can be prepared from heating Potassium Chlorate with a catalyst. How many moles of O_{2} is obtained from 1.300 g Potassium Chlorate, collected over water at $23^{\circ} \mathrm{C}$ at 745 mm Hg and what volume would it occupy?

KINETIC THEORY Kinetic Energy = Energy associated with an object in motion $=\mathrm{E}_{\mathrm{k}}=1 / 2 \mathrm{~m} \mathrm{~V}$ POSTULATES:
[Test Questions can be how these relate to $\mathrm{PV}=\mathrm{nRT}$]

1. Gases are composed of molecules whose size is negligible compared with the average distance between them.
2. Molecules move randomly in a straight lines in all directions and various speeds.
3. The forecs of attraction or repulsion between two molecules of a gas are negligible, except when they collide.
4. When molecules collide, the collisuions are elastic [no energy is lost].
5. The average Kinetic Energy of a molecule is proportional to the absolute temperature.

Discuss these various variable and their relationships to $\mathrm{PV}=\mathrm{nRT}$

MOLECULAR SPEED

The RMS Molecular speed, the average molecular speed, is equal to the speed of a molecule having the average kinetic energy.
Root-mean-square (rms) molecular speed $=u=\sqrt{\frac{3 R T}{M_{m}}}$

$$
\begin{aligned}
& \mathrm{R}=\text { Gas Constant, } \mathrm{T}=\mathrm{Temp}^{\circ} \mathrm{K}, \\
& \mathrm{M}_{\mathrm{m}}=\text { Molar Mass }
\end{aligned}
$$

Note: The gas with the higher M_{m} has the lower speed!
Hydrogen at $20^{\circ} \mathrm{C}$ has a speed of $1.90 \times 10^{3} \mathrm{~m} / \mathrm{s}=>4000 \mathrm{mph}!-\underline{\text { Prove it! }}$
Example 5.12 Oxygen in a cylinder is at $21^{\circ} \mathrm{C}$ and 15.7 atm . What is the rms speed of the molecules: $u=\left[3 * \mathbf{8 . 3 1} \mathbf{~ k g ~ m} \mathbf{m}^{\mathbf{2}} / \mathbf{s}^{\mathbf{2}} \mathbf{K} \text { Mole } * 294^{\circ} \mathrm{K} / 32.0 \times 10^{-3} \mathrm{~kg} / \text { Mole }\right]^{1 / 2}=\mathbf{1 5 . 1} \mathbf{~ m} / \mathrm{s}$ [Note book says 479]

DIFFUSION / EFFUSION

Diffusion is the process whereby a gas spreads out through another gas to occupy the space uniformly.
Effusion is the process where a gas flows through a hole in a container.
Grahm's Law of Effusion: The rate of effusion of gas molecules from a particular hole is inversely proportional to the square root of the molecular weight of the gas at constant T \& P.

Rate isproportional to $1 /[\mathrm{Mw}]^{1 / 2}$
Example 5.13 Calculate the ratio of effusion rates of molecules of carbon dioxide vs sulfur dioxide in the same container through a small hole at the same T and P .

$$
\frac{\text { Rate of effusion of } \mathrm{CO}_{2}}{\text { Rate of effusion of } \mathrm{SO}_{2}}=\sqrt{\frac{64.1 \mathrm{~g} / \mathrm{mole}^{4}}{44.0 \mathrm{~g} / \mathrm{mole}_{2}} \underline{20}_{2}}=1.21
$$

Example 5.13 If it takes 3.52 seconds for 10.0 ml of helium to effuse throught a hole in a container at T and P , how long will it take 10.0 ml of oxygen to effuse through the same hole?

VAN DER WAALS EQUATION for pressure

Previous we assumed gases obeyed certain Postulates. Two of these may not be true at higher pressures:

1. The volume of space occupied by a molecule of gas may not be negligable. $\left(\mathrm{P}+\mathrm{n}^{2} \mathrm{~A} / \mathrm{V}^{2}\right)$
2. The attraction between molecules are weak.

$$
(V-n B)
$$

$$
\left(\mathrm{P}+\mathrm{n}^{2} \mathrm{~A} / \mathrm{V}^{2}\right) *(\mathrm{~V}-\mathrm{n} \mathrm{~B})=\mathrm{n} \mathrm{R} \mathrm{~T} \quad[\text { similar to } \mathrm{P} \mathrm{~V}=\mathrm{n} \mathrm{R} \mathrm{~T}]
$$

A \& B are listed in the text book for several gases.
Example 5.14 As an ideal gas, 1.000 moles of Sulfur Dioxide at $0.0^{\circ} \mathrm{C}$ occupies 22.41 L at 1 atm . Calculate the pressure using Van Der Waals Equation

$$
\begin{array}{rll}
\mathbf{P}=[\mathbf{n R T} /(\mathbf{V}-\mathbf{n B})]-\left[\mathbf{n}^{2} \mathbf{A} / \mathbf{V} 2\right] & \mathrm{n}=1 \text { Mole } \quad \mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{K} \text { Mole } \\
\mathrm{T}=273.2^{\circ} \mathrm{K} \quad \mathrm{~V}=22.41 \mathrm{~L} & \mathrm{~b}=0.05679 \mathrm{~L} / \mathrm{Mole} \quad \mathrm{~A}=6.865 \mathrm{~L}^{2} \mathrm{~atm} / \mathrm{Mole}^{2}
\end{array}
$$

$$
P=0.989 \mathrm{~atm}
$$

See page 213 for "A Chemist looks at the Carbon Dioxide Gas and the Greenhouse Effect.

Practice Questions:

Review Questions	P 216	$5.9,5.10$
Concept Questions	P 217	$5.23,5.25,5.27$
Units of Pressure	P 218	5.31
Empirical Gas Laws	P 218	$5.33,5.35,5.39,5.41,5.45$
Ideal Gas Law	P 218	$5.49,5.51,5.53,5.57,5.59,5.61,5.63$
Stoichiometry with GV	P 219	$5.67,5.69$
Gas Mixtures	P 220	$5.75,5.77,5.81$,
Molecular Speeds, Effusion P 220	$5.83,5.85,5.89,5.91$	
Van Der Waals Eq	P 220	5.95
General Problems	P 221	$5.101,5.103,5.109,5.111$

